The impact of large scale ionospheric structure on radio occultation retrievals

نویسنده

  • A. J. Mannucci
چکیده

We study the impact of large-scale ionospheric structure on the accuracy of radio occultation (RO) retrievals. We use a climatological model of the ionosphere as well as an ionospheric data assimilation model to compare quiet and geomagnetically disturbed conditions. The presence of ionospheric electron density gradients during disturbed conditions increases the physical separation of the two GPS frequencies as the GPS signal traverses the ionosphere and atmosphere. We analyze this effect in detail using ray-tracing and a full geophysical retrieval system. During quiet conditions, our results are similar to previously published studies. The impact of a major ionospheric storm is analyzed using data from the 30 October 2003 “Halloween” superstorm period. At 40 km altitude, the refractivity bias under disturbed conditions is approximately three times larger than quiet time. These results suggest the need for ionospheric monitoring as part of an RO-based climate observation strategy. We find that even during quiet conditions, the magnitude of retrieval bias depends critically on assumed ionospheric electron density structure, which may explain variations in previously published bias estimates that use a variety of assumptions regarding large scale ionospheric structure. We quantify the impact of spacecraft orbit altitude on the magnitude of bending angle and retrieval error. Satellites in higher altitude orbits (700+ km) tend to have lower residual biases due to the tendency of the residual bending to cancel between the top and bottomside ionosphere. Another factor affecting accuracy is the commonly-used assumption that refractive index is unity at the receiver. We conclude with remarks on the implications of this study for long-term climate monitoring using RO. Correspondence to: A. J. Mannucci ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-frequency Analysis of Ionospheric Scintillation Cosmic Gps-ro Data Using Synchrosqueezing Transform

COSMIC GPS Radio occultation systems are developed for investigating global ionospheric and tropospheric features of atmosphere ionospheric effects are a major critical concern in radio communications and navigation systems. The predominant ionospheric effect is scintillation, which causes small scale fading in GNSS received signals. Hence, there is a necessity to understand the ionospheric mor...

متن کامل

Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data

This research is motivated by the recent IGS Ionosphere Working Group recommendation issued at the IGS 2010Workshop held inNewcastle, UK. This recommendation encourages studies on the evaluation of the application of COSMIC radio occultation profiles for additional IGS global ionosphere map (GIM) validation. This is because the reliability of GIMs is crucial to many geodetic applications. On th...

متن کامل

Simulating Ionosphere Scintillation Effects. Potential Applications for Future Earth Observation Missions

In real soundings of the Earth’s atmosphere, it has been found that the phase and amplitude of the signal received undergo strong oscillations at altitudes above the neutral atmosphere and below the Elayer of the ionosphere. This ionospheric scintillation effect is a consequence of multipath propagation resulting from inhomogeneities in the refractivity field of the ionosphere. Ionospheric scin...

متن کامل

Creating Maps of Ionospheric Electron Density to Support Communication, Surveillance and Navigation Systems

Space based GPS measurements onboard Low Earth Orbiting (LEO) satellites provide a uniquepossibility for exploring the ionosphere on a global scale. Both the radio occultation measurements in thelimb sounding mode and the navigation measurements using a zenith viewing GPS antenna provide theTotal Electron Content (TEC) along numerous ray paths. TEC may effectively be used for re...

متن کامل

Combining Radio Occultation Measurements with Other Instruments to Map the Ionospheric Electron Concentration

The Multi-Instrument Data Analysis System (MIDAS) algorithm is a spatial and temporal imaging program for the atmosphere and ionosphere. This analysis algorithm can routinely use dual-frequency ground-based observations from the GPS satellites to produce four-dimensional images of electron concentration over very large geographical regions (potentially globally). MIDAS also has the facility to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011